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Ciudad Universitaria, 28040 Madrid, Spain
2 Departamento de Fı́sica, Universidad de Oviedo, 33007 Oviedo, Spain

Received 25 October 2004, in final form 19 April 2005
Published 6 July 2005
Online at stacks.iop.org/JPhysA/38/6525

Abstract
Non-periodic planar patterns generated by deterministic inflation rules are
described. Several types of patterns with both unit and non-unit Pisot numbers
as inflation factors are formed by triangular prototiles. When the inflation
factor is the silver mean, the patterns can be obtained by superimposing two
subpatterns and some of them can be converted into face-to-face patterns. The
geometric constructions corresponding to 12-fold symmetry are also studied.
The Fourier transform of point masses, placed in vertex positions of the
transformed subpatterns, exhibit two-fold, four-fold and six-fold symmetries,
although the peaks with highest intensities are situated in rings with apparent
octagonal and dodecagonal symmetries.

PACS numbers: 61.44.Br, 61.50.Ah

1. Introduction

The discovery in 1984 by Shechtman, Blech, Gratias and Cahn [1] and by Ishimasa, Nissen
and Fukano [2] of quasicrystal phases in Al–Mn and Cr–Ni alloys, respectively, has motivated
research on abstract tilings in order to understand the structures of such materials [3, 4].

Geometric constructions for the derivation of substitution rules for planar tilings with odd
symmetries not divisible by three have been given in [5]. On the other hand, several types of
simple and composite triangle tilings have been generated in [6–8], by extending the geometric
constructions in order to study symmetries with experimental confirmation, namely octagonal,
decagonal and dodecagonal. Other types of geometric constructions produce hexagonal and
octagonal non-deterministic structures [9].

A description in terms of word sequences in Lindenmayer systems allows us to study in
an efficient way the possible tile orientations. The results of our study [10, 11] show that for
four-fold symmetry it is possible to separate the original patterns into two subpatterns. By
superimposing these subpatterns, which are not face to face, we can get the original ones. For
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this case, it is possible to transform the subpatterns into face-to-face patterns generated by
substitution rules. In this paper, we review these results and extend them to other symmetries
with interest from an experimental point of view.

Pisot numbers play a significant role in the theory of quasicrystals. They are related
with the existence of Bragg peaks in the diffraction patterns. When a tiling is used for
the description of a real quasicrystal, the prototiles are decorated with mass distributions
which represent the atomic positions. In order to understand the nature of the mathematical
diffraction of the corresponding point sets, it is important to know if the tiling scaling factor
is a Pisot number. In this work, we study triangle patterns with octagonal (section 2) and
dodecagonal (section 3) symmetries. They have unit and non-unit Pisot numbers as inflation
factors. For the dodecagonal pattern corresponding to a unit Pisot number, we compute the
intensities for the Bragg peaks (section 3). For the octagonal case, the same prototile set can
also be used for the generation of two types of patterns, derived in [6], with the silver ratio as
inflation factor. In relation with one of the patterns we showed in [11] that a non-face-to-face
subpattern, containing half of the orientations, can be converted into face-to-face patterns with
four-fold symmetry. We treat this case with more detail in section 4 and we show that this
result can also be generalized to two-fold (section 4) and six-fold symmetries (section 5).
When the subpatterns are transformed into face-to-face structures, the complexity and number
of prototiles increases in relation with the original triangle patterns. The Fourier analysis of
the transformed subpatterns show binary, tetragonal and hexagonal symmetries, although the
peaks with highest intensities show apparent noncrystallographic eight-fold and twelve-fold
symmetries.

2. Octagonal patterns

The patterns studied in this section have triangles as prototiles. Their edges A,B,C,D have
lengths lA = s1, lB = s2, lC = s3, lD = s4, where sν = sin(νπ/8). Arrows are placed on the
edges. For a given triangle, the edges are labelled 0 or 1, depending on whether the arrow
orientation is anticlockwise or clockwise, respectively.

The letters am, ām, bm, cm, dm, em, ēm represent the prototiles (table 1 and figure 1(a)),
where T (X, Y,Z) is a triangular tile with edges X, Y,Z placed anticlockwise and the index
m ∈ Z16 denotes relative orientation. The tile T (X, Y,Z), with the edge Z placed on the
positive x-axis, corresponds to the index 1. The oriented tile with index m is obtained by a
rotation of π(m − 1)/8 through the leftmost vertex.

In what follows the mirror image of the word w is denoted by Mir(w), the projection of
Lj into L by P(Lj ) and t is the map t

(
Li

1 . . . L
j

2L
k
3

) = Li+1
1 . . . L

j+1
2 Lk+1

3 with i, j, k ∈ Z2. If
we choose anticlockwise orientation, the substitution rules for the edges X �−→ φ−[X] in the
first type of patterns we consider are given in table 1. Observe

φ−(Li) = Mir(t (φ−(Li+1))), (1)

and φ−(D) = Mir(t (φ−(D))), therefore we do not need to put an arrow on the edge D.
Only L0 and L1 are common edges of two adjacent tiles. Therefore, the fact that the

tilings are face to face is equivalent to

P
(
φn

−(Li)
) = Mir

(
P

(
φn

−(Li+1)
))

, (2)

which is a consequence of equation (1). The relations given by equation (2) are also valid for
all the patterns considered in this work.

The patterns corresponding to the edge inflation rules φ− given in table 1 can be described
in terms of substitutional sequences. A 0L system is a triple G = {�, h, ω} where � is an
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a0 0 0 0dcb 0e 0ea0

(a)

(b)

(c)

(d) (e)

Figure 1. The patterns Til(8, −) and Til(8, +). (a) The prototile set. (b) Substitution rules for
Til(−). (c) The substitution atlas for Til(8, −). (d ) A portion of Til(8, −). (e) A portion of
Til(8, +).
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Table 1. Prototiles and edge inflation rules for Til(8, −) and Til(8, +). Even iterations of φ−(φ+)

generate Til(8, −)(Til(8, +)) (see figure 1).

Tiles
am ām bm cm

T (B0, A0, C0) T (B1, A1, C1) T (C1, B0, C1) T (A1, A1, B0)

dm em ēm

T (B0, B0,D) T (C1, A0, D) T (C0, A1, D)

Edge inflation rules
φ−:

A0 B0 C0 D
B1 A1C0 DB0 C0C1

A1 B1 C1

B0 C1A0 B1D

φ+:
A0 B0 C0 D
B0 C1A0 B1D C0C1

A1 B1 C1

B1 A1C0 DB0

alphabet, h is a finite substitution on � into the set of subsets of �∗ and ω is the axiom. G is
called a D0L system if #(h(x)) = 1, for every x in �. The alphabet is

� = {am, ām, bm, cm, dm, em, ēm, ãm,˜̄am, b̃m, c̃m, d̃m, ẽm,˜̄em, (, )}, (3)

with m ∈ Z16. It contains two parentheses (, ) and letters of types ti and t̃i representing mirror
images.

Every element belonging to � representing a tile can be used as an axiom. The set of
production rules h− is

am �−→ (�−[am]) = (cmam+7d̃m)

ām �−→ (�−[ām]) = (em−6ām+9˜̄am+1)

bm �−→ (�−[bm]) = ((d̃mbm+7̃bm+11)̃em+6)

cm �−→ (�−[cm]) = (amcm+9)

dm �−→ (�−[dm]) = ((̃amdm+7̃bm)ēm+15)

em �−→ (�−[em]) = (āmem+7̃bm+6)

ēm �−→ (�−[ēm]) = (̃ēm+7ēm+9dm+1)

) �−→)

( �−→ (

(4)

The geometric interpretation of the words sequences allows us to reconstruct the tiling
from the words. In the word ((d̃mbm+7̃bm+11)̃em+6), if two letters follow one another inside
parentheses, the corresponding oriented triangles are glued face to face in a unique way. The
oriented trapezoid (d̃mbm+7̃bm+11) is also glued face to face with the oriented triangle ẽm+6.
Iteration of the production rules generates words with increasing length representing the tiling
growth.

In this work we are interested in patterns with a Pisot number (algebraic integer greater
than 1, with the remaining roots of its minimal polynomial less than 1 in absolute value) as
inflation factor. By iterating the inflation rules given by equation (4), a class of face-to-face
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Figure 2. Vertex configurations of Til(8, +).

patterns is obtained. Although their inflation factor is not a Pisot number, we can obtain Pisot
self-similar tilings Til(8,−) by considering the inflation rules �−(ti) = �2

−(ti). The inflation
factor is the Pisot number (s2/s1)

2, highest root of x2 − 4x + 2. The substitution rules for
the tiles can be seen in figure 1(c) and a portion of the pattern is shown in figure 1(d ). It is
possible to get other patterns with the same inflation factor s2/s1 and edge substitution rules
φ+(L

i) = Mir(t (φ−(Li))) (see table 1). A part of the Pisot pattern Til(8, +), generated by the
inflation rules �+(ti) = �2

+(ti), can be seen in figure 1(e)
A first idea about the patterns complexity is obtained by analysing the possible vertex

configurations. In figure 2, we can see the 162 vertex configurations of Til(8, +), which appear
in the iteration level n = 5 and, if we do not take into account the different arrowings, no
new vertex configuration appears in n = 6. The 37 vertex configurations of Til(8,−) appear
already in the third inflation step.

The same prototile set (figure 1(a)) was used in [6] for the generation of Til(−) and Til(+),
which are self-similar patterns with the same scaling factor as the Ammann–Benker tiling,
namely, s3/s1 (the silver ratio). The substitution atlas for Til(−) can be seen in figure 1(b).
These patterns will be considered again in section 4, where we will show that they can be
obtained by superimposing two structures.

3. Patterns with 12-fold symmetry

In this section, we introduce two types of dodecagonal patterns denoted by Til(12a) and
Til(12b). We follow a procedure analogous to section 2. First, we introduce patterns with



6530 J G Escudero and J G Garcı́a

Table 2. Prototiles and edge inflation rules for Til(12a) and Til(12b). Even iterations of φa(φb)

generate Til(12a)(Til(12b)) (see figure 3).

Tiles
am bm cm dm em fm

T (B1, A1, C1) T (C1, A0, D0) T (D1, B0, F ) T (C0, B1, E0) T (E1, A1, F ) T (D0, C0, E1)

Edge inflation rules
φa :

A0 B0 C0 D0 E0 F
B0 A1C0 D1B0 E0C1 D0F E1E0

φb:
A0 B0 C0 D0 E0 F
D1 E0C1 B1D0F A1C0E1E0 D0FD1B0 C0E1E0C1

a non-Pisot inflation factor and then we see that the even iterations give Pisot patterns. In
table 2, the prototiles are represented by letters of type xm. The edge lengths are in this case
A = s1, B = s2, C = s3,D = s4, E = s5, F = s6 where sν = sin(νπ/12). The basic
substitution rules φa for the edges can also be seen in table 2.

The alphabet for the grammar descriptions of Til(12a) and Til(12b) is

{am, bm, cm, dm, em, fm, ãm, b̃m, c̃m, d̃m, ẽm, f̃ m, (, )}
with m ∈ Z24. The oriented tiles ti and t̃i are obtained by a rotation of π(i − 1)/12 through
the left most vertex. The set of production rules for a class of face-to-face patterns is

am �−→ (�a[am]) = (bmam+13ãm+1)

bm �−→ (�a[bm]) = (ambm+11cm)

cm �−→ (�a[cm]) = ((dmcm+13bm)̃cm+1)

dm �−→ (�a[dm]) = ((cmdm+11em+23)fm)

em �−→ (�a[em]) = (̃em+11em+13dm+1)

fm �−→ (�a[fm]) = ((f̃ m+9fm+13dm)f̃ m+1)

) �−→)

( �−→ (.

(5)

The patterns Til(12a) are generated by applying the inflation rules �a(ti) = �2
a(ti) which

are represented in figure 3(a). A part of the pattern can be seen in figure 3(b). The inflation
factor is now the Pisot number (s2/s1)

2, highest root of x2 − 4x + 1.
A different type of inflation rule for the same prototile set can be seen in figure 3(c). The

edge inflation rules φb are described in table 2. The production rules �b for the corresponding
grammar (figure 3(c)) are

an �−→ (ãn+11b̃nc̃n+11d̃n)

bn �−→ (ẽn+11en+13dn+1cn+14c̃n+2b̃n+15)

cn �−→ (fn+15f̃ n+11fn+23dn+10cn+23bn+10an+23ãn+11b̃nc̃n+11d̃n)

dn �−→ (c̃n+10d̃n+23f̃ n+10fn+14f̃ n+2(d̃n+15ẽn+3)c̃n+2cn+14dn+1en+13ẽn+11)

en �−→ (anbn+11cndn+11fnf̃ n+20fn+8)

fn �−→ ((b̃nc̃n+11d̃nf̃ n+11fn+15f̃ n+3d̃n+16)((cn+23dn+10fn+23f̃ n+19fn+7)(d̃n+8ẽn+20en+22))

) �−→)

( �−→ (

(6)
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(e)

(c)

(a) (b)

(d )

( f )

(b)

(d)

(c)

(a)

Figure 3. The patterns Til(12a) and Til(12b). (a) Substitution rules for Til(12a). (b) A portion of
Til(12a). (c) Even iterations of these rules produce Til(12b). (d ) A part of Til(12b).

By applying the inflation rules �b(ti) = �2
b(ti), we obtain the patterns Til(12b). A part of

the pattern, which is also face to face, can be seen in figure 3(d ). The inflation factor is now the
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Pisot number (s4/s1)
2, highest root of x2 − 12x + 9. The analysis of the vertex configurations

for Til(12a) and Til(12b) shows that both exhibit 36 in the iteration levels n = 5 and n = 4,
respectively.

The study of the Bragg spectra for one-dimensional substitution tilings made in [12] has
been generalized to higher dimensions in [13, 14]. They show that, up to possible extinctions,
a self-similar tiling will show Bragg peaks in their diffraction pattern if the scaling factor is
a Pisot number. According to [14], three types of Bragg spectra can be distinguished. If
the scaling factor is a unit (the product of the roots of its minimal polynomial is 1), then the
Bragg spectrum is finitely generated. If it is an irrational algebraic integer but not a unit,
which occurs in Til(12b), Til(8, +) and Til(8,−), then the support of the Fourier transform is
not a finitely generated module and the tilings are called limit-quasiperiodic. These types of
structures seem to occur much less frequently in the literature [14]. When the scaling factor
is a non-unit rational integer (see [9] for an example with six-fold symmetry) then the tiling
is called limit-periodic and the Bragg spectrum is not finitely generated. In what follows we
analyse Til(12a) which has a unit Pisot number as inflation factor.

The Fourier transform of a mass distribution ρ(x) placed inside every tile is defined as
usual

F(ρ(x)) = ρ̂(q) = ∫
exp(−iqx)ρ(x) d2x. (7)

The simplest model of a quasicrystal structure consists in placing delta-like scatterers on
the vertex positions of a tiling. Recursion relations for the Fourier amplitudes can be derived
along the lines of [13, 10] for 2D and [15] for 3D. The unit vectors uk , 0 � k � d −1, are such
that the angle between uk and the positive x-axis is equal to kπ/d (d = 12 in this section and 8
in section 4). For generic atomic decorations in the substitution tilings with the Pisot number
α as a scaling factor, the Bragg spectrum can be identified, with the set of those wave vectors
q for which exp(iqαnlwuk) → 1 for w = A,C,E and k = 0, 2, 4, 6, 8, 10 or w = B,D,F

and k = 1, 3, 5, 7, 9, 11 where the values for k represent the possible edge orientations. This
condition is satisfied if the wave vectors are of the form

q
2π

= 2
d−1∑
k=0

m2ku2k, (8)

where m2k are integers and d = 6 in this case.
If we define the numbers

An+2 = 4An+1 − An

A0 = 1, A1 = 4,
(9)

then by induction on n:

αn+1 = Anα − An−1. (10)

The general solution to the difference equation

A(n + 2) = 4A(n + 1) − A(n) (11)

is

R(n) = axn
1 + bxn

2 , (12)

with a, b arbitrary constants to be determined by the initial conditions and x1 = α, x2 are the
roots of the polynomial x2 − 4x + 1. Keeping in mind that x2 is less than 1 in modulus:

lim
An

An−1
= α. (13)
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Figure 4. Diffraction image of Til(12a).

For a wave vector of the form given by equation (8), it can be checked that all
the phases are integer multiples of 2π in the n → ∞ limit by taking into account
cos(π/12) = θ/2, cos(2π/12) = (θ2 − 2)/2, cos(3π/12) = (θ3 − 2θ)/2, cos(4π/12) =
(2θ2 + 1)/2, cos(5π/12) = (4θ − θ3)/2, where θ2 = α.

The diffraction pattern for Til(12a) can be seen in figure 4. In the figure the area of a
disc is proportional to the intensity of the corresponding peak. It has been computed for an
iteration level n = 30 (with a magnitude order of 1034 atomic positions). The cut-off is at
1.3% and −5 � m2k � 5 and the pattern shows 12-fold symmetry.

4. Non-periodic patterns with two-fold and four-fold symmetries

A description of Til(−) and Til(+) in terms of Lindenmayer systems, along the lines of
equation (4), is also possible [6]. The analysis of the permitted tile orientations, together with
the type of the edge substitution rules, allows us to get them by superimposing structures with
less orientations [11]. One of the structures of Til(−) can be converted into a face-to-face
pattern Til(2). The tiling Til(4) is obtained by changing the prototile shapes of one of the
substructures in Til(+). The pattern Til(2) has eight prototiles (table 3) p(X, Y, . . . , Z) which
are obtained by concatenating the edges X, Y, . . . , Z in anticlockwise orientation by starting
with the edge X in the horizontal position shared with its inflated version (see figure 5(a)).
The edge lengths are [A] = sin(π/8), [C] = sin(3π/8), [G] = [A], [R] = [F ] = [C], [E] =
[M] = [C] + [A], [H ] = [K] = 2[C]. The edge Xk

m is obtained by a rotation of (m − 1)π/d

of Xk
1 (d = 4 in this section and d = 6 in section 5). The vertex X ∩ Z of p(X, Y, . . . , Z) is

placed in the origin and the edge X on u0. The edge substitution rules are given in table 3.
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Table 3. Prototiles and edge inflation rules for Til(2) and Til(4) (see figures 5 and 6).

Til(2)

Tiles
a b c
p
(
C1

1 , A0
3, C

1
1 , A0

3

)
p
(
R0

1 , E0
3 , C0

2 , A1
4, F

1
3

)
p
(
H1, M

0
4 , E0

2

)
d e f

p
(
E0

1 , A0
2, C

1
4 , A0

2, C
1
4 ,M0

3

)
p
(
F 1

1 , G0
3, A

0
4, C

1
2

)
p
(
H1, G

1
4, F

0
2 , C0

1 , A1
3,K2

)
g h
p
(
H1, G

1
4, F

0
2 , C0

1 , A1
3, A

0
1, C

1
3 , E1

2 , R1
4 , F 0

2

)
p
(
H1, F

1
4 , G0

2, H1, F
1
4 , G0

2

)

Edge inflation rules

A0 C0 E0

C0 HA0 R1R0M1

F 0 G0 H
R0M1 F 0 HA0A1H

K M0 R0

M0R1R0M1 KE1 F 0E1

Til(4)

Tiles
a ā b
p
(
Q0

1, C
0
3 , T 0

4 , C0
3 , T 0

2

)
p
(
R1

1 , T 1
3 , C1

4 , T 1
3 , C1

2

)
p
(
P1,Q

1
4, Q

1
2

)
c d e
p
(
C0

1 , A0
4, S

0
1 , A0

2

)
p
(
P1, C

0
4 , T 0

1 , A1
3, S

1
2

)
p
(
T 0

1 , C0
4 , S1

2 , A1
3

)
ē f g

p
(
T 1

1 , C1
4 , S0

2 , A0
3

)
p
(
Q0

1, T
1

4 , C1
1 , A1

4, S
1
3

)
p
(
Q0

1, R
1
4 , S0

1 , A0
2, A

1
4, S

1
3

)
h k l
p
(
T 0

1 , A1
3, T

0
1 , A1

3

)
p
(
Q0

1, C
0
3 , C1

1 , A1
4, T

0
2

)
p
(
P1, S

0
4 , C1

2 , T 1
1 , C1

4 , T 1
3 , C1

2

)
m
p
(
C1

1 , T 1
4 , A0

2, C
0
1 , A0

2, T
1

4

)

Edge inflation rules

A0 S0 C0

C1 T 1 PA1

T 0 R0 Q0

C1Q0 C0C1Q0 PR0

P
Q1C0C1Q0

If we represent an eight-fold rotation around the origin by ζ 2 = exp(i2π/8), a translation
along the vector uk by ζ k , and a rotation r followed by a translation t by [r, t], then the pattern
xn, obtained by applying n times the substitution rules given in figure 5(a) to the tile x, can be
described in the following way:

an = [ζ 6, αnζ 2]̃en−1 ∪ [1, αn−1]hn−1 ∪ [ζ 14, αn+1]̃en−1

bn = [ζ 12, 0]̃bn−1 ∪ [ζ 10, αn−1(ζ 3 + α)]̃an−1 ∪ [ζ 4, αn(ζ 4 + α)](bn−1 + b̃n−1)

∪ [ζ 10, αn((α + 1)ζ 2 − 2ζ + α)]̃cn−1 ∪ [1, αnζ 2]dn−1

cn = [ζ 10, 0]̃en ∪ [ζ 6, αn(ζ 2 + α)]̃en−1 ∪ [1, 2αn+1]f̃n−1 ∪ [ζ 10, αn+1ζ ]bn−1

∪ [1, αn(ζ 2 + (1 + α))]̃an−1
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(a) (b)

(c) (d)

(e) ( f )

( g) (h)

(a)

(b) (c)

Figure 5. The pattern Til(2). (a) Substitution rules for the tiles with edges given in table 3. The
first inflation step is shown in the figure. It corresponds to n = 1 in equation (14) which gives the
prototiles translations and rotations necessary to generate the inflated tiles. (b) A portion of Til(2).
(c) Triangle pattern obtained from Til(2).
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(a) (a)-

(b) (c)

(d) (e)

(e)- (f )

(g) (h)

(i) ( j)

(k)

(a)

(b)

Figure 6. The pattern Til(4). (a) Substitution rules. (b) A portion of Til(4).

dn = [ζ 6, αn(1 + α)]cn ∪ [ζ, αn(αζ + 1 + α)]̃an

en = [1, αn+1]̃bn−1 ∪ [ζ 10, 2αnζ ]cn−1 ∪ [ζ 6, αn+1ζ ]̃an−1
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(a) (b)

Figure 7. Diffraction images of (a) Til(2) and (b) Til(4).

fn = [ζ 10, 0]ẽn ∪ [ζ 6, αn(ζ 2 + α)]̃en−1 ∪ [1, 2αn+1]̃gn−1

∪ [ζ 8, αn−1(−αζ 2 + 2α2ζ + 1)]̃cn−1

∪ [ζ 14, αn(1 + α)ζ ]dn − 1 ∪ [ζ 10, αn+1ζ ]̃bn− 1

∪ [ζ 8, αn−1(−αζ 3 + ζ 2 + α2ζ )]̃an−1

gn = fn ∪ [ζ 14, αn+1ζ 3]̃bn

hn = gn−1 ∪ [ζ 10, αn(ζ 2 + α)]en−1 ∪ [ζ 12, αn+1]̃an−1 ∪ [1, 2αn−1(1 + α)]cn−1

∪ [ζ 8, αn(αζ 3 + ζ + 2α)]gn−1 ∪ [ζ, αn(αζ 3 − ζ 2 + ζ + α)]en−1

∪ [ζ 2, αn(αζ 3 + ζ + α)]̃an−1 ∪ [ζ 8, αn(αζ 3 + ζ + 2)]cn−1

∪ [1, αn−1(α2ζ 3 − (1 + α)ζ 2 + αζ + α2)]an−1

(14)

where α = sin(3π/8)/sin(π/8) is the tilings inflation factor and [A] = 1, [C] = α for
simplicity. A portion of the tiling can be seen in figure 5(b). By marking with straight line
segments the prototiles interiors as in figure 5(a), we can get a pattern with the same prototiles
appearing in Til(8,−) (figure 5(c)).

The prototiles (figure 6(a)) and edge inflation rules for the pattern Til(4) are described in
table 3. where [S] = [A], [T ] = [C], [Q] = [C] + [A], [P ] = 2[C]. The tile inflation rules
can be seen in figure 6(a) and a portion of the pattern in figure 6(b). In Til(2), the 23 vertex
configurations appearing in the fourth iteration level coincide with those appearing in the fifth
level. The 70 vertex configurations for Til(4) appear in the sixth iteration level.

In figures 7(a) and (b), we can see the Fourier intensities for Til(2) and Til(4), respectively.
They have been computed along the lines of [13, 10] by using recursion relations between
Fourier amplitudes derived from equation (14) (and analogous equation for Til(4)). The Bragg
peaks are given by equation (8) with d = 4. The computed diffraction patterns (figure 7)
correspond to c12 for Til(2) (7 804 510 563 atomic positions) and b12 for Til(4) (8 095 487 406
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Table 4. Prototiles and edge inflation rules for Til(6,−) and Til(6, +) (see figures 8 and 9).

Til(6,−)

Tiles
a b c
p
(
E1

1 , A1
4, K

0
6 , C0

3

)
p
(
H 0

1 , G6, L
1
4

)
p
(
L1

1, P
0
4 , C0

1 , A0
6, E

0
3

)
d e f

p
(
G1, C

1
5 , K1

2 , G1, C
1
5 , K1

2

)
p
(
M1, A

0
6, E

0
3 , C1

1 , K0
4 , G3

)
p
(
C1

1 , P 1
4 , L0

1, E
0
5 , A1

2, A
0
6

)
g

p
(
H 0

1 , E1
6 , A1

3,K
0
5 , C0

2 , L1
4

)

Edge inflation rules

A0 C0 E0

E1 P 1H 0 A1H 1H 0

K0 P 0 L0

GC1 L0GC1 P 0P 1H 0

G H 0 M
H 1H 0A0A1H 1H 0 L0GMG H 1P 0P 1H 0

Til(6+)

Tiles
a b c
p
(
K0

1 , P 0
6 , P 0

2

)
p
(
F 1

1 , A1
4, F

1
1 , A1

4

)
p
(
C1

1 , L1
4, C

1
1 , L1

4

)
d e f

p
(
F 0

1 , A0
4, T

0
5 , E0

2

)
p
(
N1, P

1
5 , K0

2

)
p
(
L0

1, E
1
5 , T 1

2 , C0
2

)
g h i
p
(
K0

1 , F 0
6 , A0

3, E
1
1 , C1

4

)
p
(
K0

1 , C0
6 , L0

3, K
1
1 , E1

5 , T 1
2

)
p
(
M1, C

0
6 , E0

3 , C0
2 , L0

5, K
1
2

)
j k l
p
(
K1

1 ,K1
5 , K1

3

)
p
(
C0

1 , E0
4 , C0

3 , E0
6 , P 0

5

)
p
(
N1, T

0
5 , E0

2 , F 0
1 , A0

4, M2
)

m n
p
(
C1

1 , K1
2 , K1

6 , E1
4 , C1

1 , L1
4

)
p
(
F 1

1 , A1
4, F

1
1 , P 1

5 , K0
2 , A1

4

)
o
p
(
N1, T

0
5 , E0

2 , F 0
1 , A0

4, C
0
1 , E0

4 , P 0
3 , C0

5 , E0
2

)
p
p
(
E1

1 , C1
4 , K0

1 , F 0
6 , A0

3, C
0
6 , E0

3 , C0
2 , L0

5, K
1
3

)

Edge inflation rules

A0 T 0 C0

F 1 E1 K0E1

L0 E0 F 0

C1N C1NP 0 K0K1A1

P 0 M N
K0M P 1NC0C1NP 0 K0K1A1A0K0K1

K0

NC0C1NP 0

atomic positions). The cut-off is at 2.2% of the central intensity and −7 � m2k � 7. The
rings with apparent octagonal symmetry are formed by rotated copies of rings with lower
symmetry. Two-fold and four-fold are the exact symmetries of the patterns which are shown
in the diffraction images.
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(a) (b)

(c) (d)

(e) ( f )

(a)

(g)

(b) (c)

Figure 8. The pattern Til(6,−). (a) Substitution rules. (b) A portion of Til(6, −). (c) Triangle
pattern obtained from Til(6, −).

5. Hexagonal non-periodic patterns

Two types of triangle patterns Til(12,−) and Til(12, +) with the Pisot inflation factor
sin(3π/12)/ sin(π/12) were introduced in [8]. Their grammar description allows us to
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(a) (b)

(c) (d)

(e) ( f )

(g) (h)

(i) (j )

(k) (l)

(m) (n)

(o) (p)

(a)

Figure 9. The pattern Til(6, +). (a) Substitution rules. (b) A portion of Til(6, +).

compute the tile orientations in an efficient way. This information and the type of edge
inflation rules are necessary in order to get subpatterns with half the orientations. One of the
subpatterns for each original pattern can be converted into face-to-face patterns. We denote the
transformed subpatterns by Til(6,−) and Til(6, +). In this section, we study their inflation rules
and diffraction properties. In table 4, we show the prototiles (figure 8(a)) and substitution rules
for the edges for Til(6,−). The edge lengths are [A] = sin(π/12), [C] = sin(3π/12), [E] =
sin(5π/12), [K] = [C], [L] = [P ] = [E], [H ] = [C] + [E], [G] = 2[E], [M] = 2[C].

A portion of Til(6,−) can be seen in figure 8(b). It is possible to mark the prototile
interiors by straight line segments (figure 8(a)) and we obtain a pattern (figure 8(c)) with the



Non-periodic tessellations with unit and non-unit Pisot inflation factors 6541

(b)

Figure 9. (Continued.)

(a) (b)

Figure 10. Diffraction images of (a) Til(6,−) and (b) Til(6, +).

same prototiles as Til(12a). The prototiles (figure 9(a)) for Til(6, +) and edge inflation rules
are given in table 4 where [T ] = [A], [L] = [C], [F ] = [E], [P ] = [C] + [A], [M] = [N ] =
2[E], [K] = [C] + [E]. A characteristic distinguishing this pattern (figure 9(b)) is that it
contains only rotated prototiles while the other patterns studied in this work have both rotated
and reflected prototiles. The number of vertex configurations in the third and fourth iteration
levels is 29 for Til(6,−). The 48 vertex configurations in Til(6, +) appear in the fourth level.

The diffraction images for the pattern b9 of Til(6,−) (60 475 606 682 atomic positions)
and j8 of Til(6, +) (9 142 055 988 atomic positions) can be seen in figures 10(a) and (b)
respectively. Bragg peaks are indexed as equation (8) for d = 6. The cut-off is at 4.3%
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for Til(6,−) and 2.8% for Til(6, +) of the central intensity and −5 � m2k � 5. While the
peaks with highest intensities are situated in apparent dodecagonal rings, their symmetries are
hexagonal.

6. Conclusion

The main purpose of this paper has been the generation by means of inflation rules of
several patterns which are non-periodic. They show non-crystallographic and crystallographic
symmetries. Aperiodic tetragonal patterns have been derived in [16] and several dodecagonal
patterns have been given in [17–19]. In the dodecagonal pattern derived in [17] the Bragg
positions are 12-fold symmetric, whereas the intensities of the Bragg peaks are only six-
fold symmetric [14]. Non-periodic square–triangle tilings with hexagonal symmetries are
described in [20]. Also limit-quasiperiodic square–rhombus patterns with octagonal symmetry
were derived in [21]. In comparison with the patterns having the same symmetries appearing
in the cited literature, the patterns presented in this work show a higher number of vertex
configurations. This is specially evident for the limit-quasiperiodic pattern Til(8, +). In the
case of the transformed patterns, the prototile boundaries are more complex than normally
and the exact symmetries appear in Bragg peaks with lower intensities. Low resolution of
the diffraction images shows apparent octagonal and dodecagonal symmetries. These peaks
are in fact situated within rotated rings with lower symmetries and a small difference in their
intensities.

In [22], phase transformations in the octagonal ternary alloy of Mn–Si–Al have been
considered. Octagonal–cubic phase transitions have been observed by transmission electron
microscopic observations. Electron diffraction patterns show intermediate phases during the
phase transitions. In addition to the common use of large unit cells of approximants, the
tilings presented in this work could be considered in order to describe intermediate structures
in octagonal–cubic and dodecagonal–hexagonal phase transitions.

The generation of the tilings by projection methods [3, 23], the existence of matching
rules [24] and the search of a minimal prototile set are open questions which must also be
studied.
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